首页> 外文OA文献 >Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis
【2h】

Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

机译:基于地理空间分析的室内空气污染浓度预测方法的发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW) and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE) and standard deviation (SD). The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.
机译:生活在繁忙道路附近的人们可能会受到交通诱导的空气污染物的影响。污染物可能会侵入室内环境,对居住者造成健康风险。因此,对污染物暴露的预测对于与环境可持续运输有关的影响评估和政策制定至关重要。这项研究涉及选择空间插值方法,这些方法可用于基于室外污染物映射的室内空气质量预测,而无需室内测量数据。这项研究是在印度尼西亚万隆Karees的人口稠密地区进行的。作为初步研究,对该区域的空气污染物NO2进行了监测。通过被动扩散管测量二氧化氮浓度。在94个位置(包括30个路边和64个室外位置)测量了室外NO2浓度。在64个位置测量了住宅室内NO2浓度。为了获得空间连续的空气质量图,应用了反距离权重(IDW)和克里格法的空间插值方法。插值方法的选择是基于最小均方根误差(RMSE)和标准偏差(SD)进行的。对于室外NO2浓度分布图,最合适的插值方法是Kriging,其SD值为5.45 µg / m3,RMSE值为5.45 µg / m3,而对于室内NO2浓度分布图,IDW最适合采用5.92 µg / m3的RMSE值。 m3,SD值为5.92 µg / m3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号